4-5
 Isosceles and Equilateral Triangles

 Gercoonit3, GAssi.EAFS.912.G-C0.4.13,

MP 1, MP 3, MP 4

Objective To use and apply properties of isosceles and equilateral triangles

In the Solve It, you classified a triangle based on the lengths of its sides. You can also identify certain triangles based on information about their angles. In this lesson, you will learn how to use and apply properties of isosceles and equilateral triangles.

Essential Understanding The angles and sides of isosceles and equilateral triangles have special relationships.

Lesson Vocabulary
legs of an isosceles triangle

- base of an isosceles triangle
- vertex angle of an isosceles triangle
- base angles of an isosceles triangle
- corollary

Isosceles triangles are common in the real world. You can frequently see them in structures such as bridges and buildings, as well as in art and design. The congruent sides of an isosceles triangle are its legs. The third side is the base. The two congruent legs form the vertex angle. The other two angles are the base angles.

The proof of the Isosceles Triangle Theorem requires an auxiliary line.

Proof Proof of Theorem 4-3: Isosceles Triangle Theorem

Begin with isosceles $\triangle X Y Z$ with $\overline{X Y} \cong \overline{X Z}$. Draw $\overline{X B}$, the bisector of the vertex angle $\angle Y X Z$.

Given: $\overline{X Y} \cong \overline{X Z}, \overline{X B}$ bisects $\angle Y X Z$
Prove: $\angle Y \cong \angle Z$

Proof: $\overline{X Y} \cong \overline{X Z}$ is given. By the definition of angle bisector, $\angle 1 \cong \angle 2$. By the Reflexive Property of Congruence, $\overline{X B} \cong \overline{X B}$. So by the SAS Postulate, $\triangle X Y B \cong \triangle X Z B$. $\angle Y \cong \angle Z$ since corresponding parts of congruent triangles are congruent.

Problem 1 Using the Isosceles Triangle Theorems

Think

What are you looking for in the diagram? To use the Isosceles Triangle Theorems, you need a pair of congruent angles or a pair of congruent sides.

A Is $\overline{A B}$ congruent to $\overline{C B}$? Explain.
Yes. Since $\angle C \cong \angle A, \overline{A B} \cong \overline{C B}$ by the Converse of the Isosceles Triangle Theorem.
B Is $\angle A$ congruent to $\angle D E A$? Explain.
Yes. Since $\overline{A D} \cong \overline{E D}, \angle A \cong \angle D E A$ by the Isosceles Triangle Theorem.

Got lt ? 1. a. Is $\angle W V S$ congruent to $\angle S$? Is $\overline{T R}$ congruent to $\overline{T S}$? Explain.
b. Reasoning Can you conclude that $\triangle R U V$ is isosceles? Explain.

An isosceles triangle has a certain type of symmetry about a line through its vertex angle. The theorems in this lesson suggest this symmetry, which you will study in greater detail in Lesson 9-4.

Theorem

If a line bisects the vertex angle of an isosceles triangle, then the line is also the perpendicular bisector of the base.

If . . .
$\overline{A C} \cong \overline{B C}$ and $\angle A C D \cong \angle B C D$

Then...
$\overline{C D} \perp \overline{A B}$ and $\overline{A D} \cong \overline{B D}$

You will prove Theorem 4-5 in Exercise 26.

Think

What does the diagram tell you? Since $\overline{A B} \cong \overline{C B}, \triangle A B C$ is isosceles. Since $\angle A B D \cong \angle C B D, \overline{B D}$ bisects the vertex angle of the isosceles triangle.

Problem 2 Using Algebra

What is the value of x ?

Since $\overline{A B} \cong \overline{C B}$, by the Isosceles Triangle Theorem, $\angle A \cong \angle C$. So $m \angle C=54$.

Since $\overline{B D}$ bisects $\angle A B C$, you know by Theorem 4-5 that $\overline{B D} \perp \overline{A C}$. So $m \angle B D C=90$.

$$
\begin{aligned}
m \angle C+m \angle B D C+m \angle D B C & =180 & & \text { Triangle Angle-Sum Theorem } \\
54+90+x & =180 & & \text { Substitute. } \\
x & =36 & & \text { Subtract } 144 \text { from each side. }
\end{aligned}
$$

Got lt?
2. Suppose $m \angle A=27$. What is the value of x ?

GRIDDED RESPONSE

A corollary is a theorem that can be proved easily using another theorem. Since a corollary is a theorem, you can use it as a reason in a proof.

Corollary to Theorem 4-3

Corollary

If a triangle is equilateral, then the triangle is equiangular.

If . . .
$\overline{X Y} \cong \overline{Y Z} \cong \overline{Z X}$

Corollary to Theorem 4-4

Corollary

If a triangle is equiangular, then the triangle is equilateral.

If . . .
$\angle X \cong \angle Y \cong \angle Z$

Design What are the measures of $\angle A, \angle B$, and $\angle A D C$ in the photo at the right?

Think
The triangles are equilateral, so they are also equiangular. Find the measure of each angle of an equilateral triangle.
$\angle A$ and $\angle B$ are both angles in an equilateral triangle.

Use the Angle Addition Postulate to find the measure of $\angle A D C$.

Both $\angle A D E$ and $\angle C D E$ are angles in an equilateral triangle. So $m \angle A D E=60$ and $m \angle C D E=60$. Substitute into the above equation and simplify.

Write

Let $a=$ measure of one angle.

$$
3 a=180
$$

$$
a=60
$$

$m \angle A=m \angle B=60$
$\mathrm{m} \angle A D C=\mathrm{m} \angle A D E+\mathrm{m} \angle C D E$
$\mathrm{m} \angle A D C=60+60$
$\mathrm{m} \angle A D C=120$

Got lt ? 3. Suppose the triangles in Problem 3 are isosceles triangles, where $\angle A D E$, $\angle D E C$, and $\angle E C B$ are vertex angles. If the vertex angles each have a measure of 58, what are $m \angle A$ and $m \angle B C D$?

Lesson Check

Do you know HOW?

1. What is $m \angle A$?
a. A

b.

2. What is the value of x ?
a.

b.

3. The measure of one base angle of an isosceles triangle is 23 . What are the measures of the other two angles?

Do you UNDERSTAND?

MATHEMATICAL

 PRACTICES4. What is the relationship between sides and angles for each type of triangle?
a. isosceles
b. equilateral
5. Error Analysis Claudia drew an isosceles triangle.

She asked Sue to mark it. Explain why the marking of the diagram is incorrect.

6. $\overline{V T} \cong$?
7. $\overline{U T} \cong$? $\cong \overline{Y X}$
8. $\overline{V U} \cong$?
9. $\angle V Y U \cong$?

Algebra Find the values of x and y.
See Problem 2.
10.

11.

12.

13. An equilateral triangle and an isosceles triangle share a common side. What is the measure of $\angle A B C$?
14. Architecture Each face of the Great Pyramid at Giza is an isosceles triangle with a 76° vertex angle. What are the measures of the base angles?

See Problem 3.
15. Reasoning What are the measures of the base angles of a right isosceles triangle? Explain.

Given isosceles $\triangle J K L$ with base $\overline{J L}$, find each value.
16. If $m \angle L=58$, then $m \angle L K J=$?.
17. If $J L=5$, then $M L=$?.
18. If $m \angle J K M=48$, then $m \angle J=$? .
19. If $m \angle J=55$, then $m \angle J K M=$? .

20. Think About a Plan A triangle has angle measures $x+15,3 x-35$, and $4 x$. What type of triangle is it? Be as specific as possible. Justify your answer.

- What do you know about the sum of the angle measures of a triangle?
- What do you need to know to classify a triangle?
- What type of triangle has no congruent angles? Two congruent angles? Three congruent angles?

21. Reasoning An exterior angle of an isosceles triangle has measure 100. Find two possible sets of measures for the angles of the triangle.
22. Developing Proof Here is another way to prove the Isosceles Triangle Theorem. Supply the missing information.

Begin with isosceles $\triangle H K J$ with $\overline{K H} \cong \overline{K J}$.
Draw a. ? , a bisector of the base $\overline{H J}$.
Given: $\overline{K H} \cong \overline{K J}$, b. ? bisects $\overline{H J}$
Prove: $\angle H \cong \angle J$
Statements
Reasons

1) $\overline{K M}$ bisects $\overline{H J}$.
2) $\overline{H M} \cong \overline{J M}$
3) $\overline{K H} \cong \overline{K J}$
4) $\overline{K M} \cong \overline{K M}$
5) $\triangle K H M \cong \triangle K J M$
6) $\angle H \cong \angle J$
7) c. ?
8) d. ?
9) Given
10) e. ?
11) f. ?
12) g. ?
23. Supply the missing information in this statement of the Converse of the Isosceles Proof Triangle Theorem. Then write a proof.

Begin with $\triangle P R Q$ with $\angle P \cong \angle Q$.
Draw a. ? , the bisector of $\angle P R Q$.
Given: $\angle P \cong \angle Q$, b. ? bisects $\angle P R Q$
Prove: $\overline{P R} \cong \overline{Q R}$

24. Writing Explain how the corollaries to the Isosceles Triangle Theorem and its converse follow from the theorems.
25. Given: $\overline{A E} \cong \overline{D E}, \overline{A B} \cong \overline{D C}$
${ }^{\text {Proof }}$ Prove: $\triangle A B E \cong \triangle D C E$

26. Prove Theorem 4-5. Use the diagram next to it on page 252.

Proof
27. a. Communications In the diagram at the right, what type of triangle is formed by the cables of the same height and the ground?
b. What are the two different base lengths of the triangles?
c. How is the tower related to each of the triangles?
28. Algebra The length of the base of an isosceles triangle is x. The length of a leg is $2 x-5$. The perimeter of the triangle is 20 . Find x.
29. Constructions Construct equilateral triangle $A B C$. Justify your method.

Algebra Find the values of m and n.
30.

31.

32.

Coordinate Geometry For each pair of points, there are six points that could be the third vertex of an isosceles right triangle. Find the coordinates of each point.
33. $(4,0)$ and $(0,4)$
34. $(0,0)$ and $(5,5)$
35. $(2,3)$ and $(5,6)$
36. Reasoning What measures are possible for the base angles of an acute isosceles triangle?

Standardized Test Prep

SAT/ACT

Short Response
37. In isosceles $\triangle A B C$, the vertex angle is $\angle A$. What can you prove?
(A) $A B=C B$
(B) $m \angle B=m \angle C$
(C) $\angle A \cong \angle B$
(D) $\overline{B C} \cong \overline{A C}$
38. $\triangle L M N \cong \triangle P Q R$. What is $L M$?
(F) 3
(H) 8
(G) 4
(I) 10

39. What is the exact area of the base of a circular swimming pool with diameter 16 ft ?
(A) $1018.29 \mathrm{ft}^{2}$
(B) $1018.3 \mathrm{ft}^{2}$
(C) $64 \pi \mathrm{ft}^{2}$
(D) $256 \pi \mathrm{ft}^{2}$
40. Suppose $\triangle A B C$ and $\triangle D E F$ are nonright triangles. If $\angle B \cong \angle E$ and $\overline{A B} \cong \overline{D E}$, what else do you need to know to prove $\triangle A B C \cong \triangle D E F$? Explain.

Mixed Review

41. $m \angle R=59, m \angle T=93=m \angle H, m \angle V=28$, and $R T=G H$. What, if anything, can you conclude about $R C$ and $G V$? Explain.

See Lesson 4-4.
42. Find the pattern of the sequence M, T, W, T, F, \ldots Then find the next two terms.

See Lesson 2-1.

Get Ready! To prepare for Lesson 4-6, do Exercises 43 and 44.

Can you conclude that the two triangles are congruent? Explain.
See Lesson 4-2.
43.

44.

